首页> 外文OA文献 >Evolution of eukaryal tRNA-guanine transglycosylase: insight gained from the heterocyclic substrate recognition by the wild-type and mutant human and Escherichia coli tRNA-guanine transglycosylases
【2h】

Evolution of eukaryal tRNA-guanine transglycosylase: insight gained from the heterocyclic substrate recognition by the wild-type and mutant human and Escherichia coli tRNA-guanine transglycosylases

机译:真核tRNA-鸟嘌呤转糖基酶的进化:从野生型和突变的人类和大肠杆菌tRNA-鸟嘌呤转糖基酶的杂环底物识别中获得的见解

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

The enzyme tRNA-guanine transglycosylase (TGT) is involved in the queuosine modification of tRNAs in eukarya and eubacteria and in the archaeosine modification of tRNAs in archaea. However, the different classes of TGTs utilize different heterocyclic substrates (and tRNA in the case of archaea). Based on the X-ray structural analyses, an earlier study [Stengl et al. (2005) Mechanism and substrate specificity of tRNA-guanine transglycosylases (TGTs): tRNA-modifying enzymes from the three different kingdoms of life share a common catalytic mechanism. Chembiochem, 6, 1926–1939] has made a compelling case for the divergent evolution of the eubacterial and archaeal TGTs. The X-ray structure of the eukaryal class of TGTs is not known. We performed sequence homology and phylogenetic analyses, and carried out enzyme kinetics studies with the wild-type and mutant TGTs from Escherichia coli and human using various heterocyclic substrates that we synthesized. Observations with the Cys145Val (E. coli) and the corresponding Val161Cys (human) TGTs are consistent with the idea that the Cys145 evolved in eubacterial TGTs to recognize preQ1 but not queuine, whereas the eukaryal equivalent, Val161, evolved for increased recognition of queuine and a concomitantly decreased recognition of preQ1. Both the phylogenetic and kinetic analyses support the conclusion that all TGTs have divergently evolved to specifically recognize their cognate heterocyclic substrates.
机译:tRNA-鸟嘌呤转糖基酶(TGT)酶参与真核生物和真细菌中tRNA的奎因修饰,以及古细菌中tRNA的古菌碱修饰。但是,不同类别的TGT使用不同的杂环底物(在古细菌的情况下使用tRNA)。根据X射线结构分析,一项较早的研究[Stengl等。 (2005)tRNA-鸟嘌呤转糖基化酶(TGTs)的机制和底物特异性:来自三个不同生命王国的tRNA修饰酶共有一个共同的催化机制。 Chembiochem,6,1926-1939年]为真细菌和古细菌TGT的不同发展提供了令人信服的论据。 TGTs真核生物类的X射线结构未知。我们进行了序列同源性和系统发育分析,并使用我们合成的各种杂环底物,对来自大肠杆菌和人的野生型和突变型TGT进行了酶动力学研究。用Cys145Val(大肠杆菌)和相应的Val161Cys(人)TGT观察到的结果与Cys145在真细菌TGT中进化以识别preQ1而不是奎宁是一致的,而真核等同物Val161则进化为对奎宁和随之而来的对preQ1的认知下降。系统发育和动力学分析均支持以下结论:所有TGT均发生了分化,以特异性识别其同源杂环底物。

著录项

相似文献

  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号